CMSC202
Computer Science Il for Majors

Lecture 04 —
Pointers

Based on slides by Chris Marron at UMBC www.umbc.edu

Last Class We Covered

* C++ Functions
— Parts of a function:
* Prototype
* Definition
* Call
* Arrays
— Declaration
— Initialization

e Passing arrays to function

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Note Taker Still Needed

AN HONORS UNIVERSITY IN MARYLAND

A peer note taker is still needed for this class. A peer note taker
is a volunteer student who provides a copy of his or her notes for
each class session to another member of the class who has been
deemed eligible for this service based on a disability. Peer note
takers will be paid a $200 stipend for their service. Peer note
taking is not a part time job but rather a volunteer service for
which enrolled students can earn a stipend for sharing the notes
they are already taking for themselves.

If you are interested in serving in this important role, please fill
out a note taker application on the Student Support Services
website or in person in the SSS office in Math/Psychology 213.

www.umbc.edu

Today’s Objectives

* To review functions and how they work

* To begin to understand pointers
— Pointers are a complicated and complex concept
— You may not immediately “get it” — that’s fine!

* To learn how pointers can be used in functions
— Passing in entire arrays
— “Returning” more than one value

www.umbc.edu

Functions and Arguments

www.umbc.edu

Review of Functions

Here is a simple function that adds one to an
integer and returns the new value

— Definition:
int AddOne (int num) ({
return num++;

}
— Call:

int enrolled = 99;
enrolled = AddOne (enrolled) ;

www.umbc.edu

Function Arguments

 What is happening “behind the scenes”?

* When the AddOne () function is called, the
value of the variable is passed in as an argument
— The value is saved in AddOne’s local variable num

* Changes made to x do not affect anything
outside of the function AddOne ()

— This is called the scope of the variable

www.umbc.edu

* Scope is the “visibility” of variables

— Which parts of your program can “see” a variable

* Every function has its own scope:
— Themain () function has a set of variables
— So does the AddOne () function

 They can’t “see” each other’s variables

— Which is why we must pass arguments
and return values between functions

www.umbc.edu

Addresses

* Every variable in a program is stored
somewhere in the computer’s memory
— This location is called the address
— All variables have a unique address

* Addresses are normally expressed in hex:
— OxFFO00
— 0x70BF
— 0x659B

10

www.umbc.edu

Array Addresses

* An array also has an address

— The location of the first element of the array

char terry[6] "hello";

'h! e 1 11 g I'U]I
1702 1703 1704 1705 1706 1707

I

terry | 1702

 We'll discuss arrays more later today

11

www.umbc.edu

Function Scope

* What happens when AddOne () is called?
int age = 20;
age = AddOne (age) ;

* The value of age is passed in, and stored in
another variable called num
— What is the scope of each of these variables?
— age isin the scope of main ()
— numiis in the scope of AddOne ()

12

www.umbc.edu

Function Calls

* The blue box represents scope

* The “house” shape is a variable’s
name, address, and value

main ()

age

0x1000

20

13

www.umbc.edu

Function Calls

e Whenmain () calls AddOne ()

— The value is passed in, and stored in num

main () AddOne ()
age num
0x1000 0Ox5286

20

14

www.umbc.edu

Function Calls

e When the AddOne () function changes num,
what happens to the age variable?

— Nothing!
main () AddOne ()
age num
0x1000 0x5286
20 21

15

www.umbc.edu

Function Calls

* How do we update the value of age?

— By returning the new value and assigning it to age

main () AddOne ()
age num
0x1000 0Ox5286

21 €————21)

16

www.umbc.edu

Function Calls

* What happens when the function returns?

— The function is over
— AddOne () and num are “out of scope”

main ()
age And are
no longer
0x1000 available
to us!
21

17

www.umbc.edu

Pointer Introduction

www.umbc.edu

Pointers

* A pointeris a variable whose value is an
address to somewhere in memory

cout << "x is " << x << endl;
cout << 'ptr is " << ptr << endl;

* This will print out something like:
X is 37
ptr is Ox7ffedcabab5c4

19

www.umbc.edu

Pointers

* Pointers are incredibly useful to programmers!

e Allow functions to
— Modify multiple arguments
— Use and modify arrays as arguments

* Programs can be made more efficient
* Dynamic objects can be used

— We'll discuss this later in the semester

20

www.umbc.edu

Creating Pointers

* A pointer is just like any regular variable
— |t must have a type

— |t must have a name

— |t must contain a value

* To tell the compiler we’re creating a pointer,
we need to use * in the declaration

int *myPtr;

21

www.umbc.edu

Pointer Declarations

* All of the following are valid declarations:

= * °
int *myPtr; \ this is the most

int* myPtr; common way

int * myPtr;
— Even this is valid (but don’t do this):
int*myPtr;

* The spacing and location of the star (“*”)
don’t matter to the compiler

22

www.umbc.edu

Pointer Declarations

* Since position doesn’t matter, why use this?
int *myPtr;

e What does this code do?
int *myPtr, yourPtr, ourPtr; X

— It creates one pointer and two integers!

* What does this code do?
int *myPtr, *yourPtr, *ourPtr; \/

— |t creates three integers!
23

www.umbc.edu

Pointers and “Regular” Variables

* As we said earlier, pointers are just variables

— Instead of storing an int or a float or a char,

they store an address in memory

num

0x5286

20

address

value

“regular” variable

24

ptr

Ox560B |address

OxXFF8A |[value

pointer variable

(where it
lives in
memory)

(where it
points in
memory)

www.umbc.edu

Assigning Value to a Pointer

* The value of a pointer is always an address

* To get the address of any variable, we use
an ampersand (“&”)

int x =5;
int *xPtr;
// xPtr "points to" x

xPtr = &x;

25

www.umbc.edu

Assigning to a Pointer

* All of these are valid assignments:
int x =5;
int *ptrl
int *ptr2;

&X;

ptr2 = &x;
int *ptr3 = ptrl;

26

www.umbc.edu

Assigning to a Pointer

* This is not a valid assighnment — why?
int x =5;

char *ptrd = &x;

* Pointer type must match the type of the variable
whose address it stores

 Compiler will give you an error:

cannot convert ‘int*’ to ‘char*’ in initialization

27

www.umbc.edu

Making Pointers “Point”

* When we assign a value to a pointer, we are
telling it where in memory to point to

val

// create both wvariables

double val; OxBBOS

double *ptr; 5.6

// assign wvalues

val = 5.6; ptr

ptr = &val; OX564F
OxBBO3

28 www.umbc.edu

The Asterisk and the Ampersand

www.umbc.edu

Review: The Ampersand

e The ampersand
— Returns the address of a variable

— Must be placed in front of the variable name

int x =5;
int *varPtr = &x;
int y =7;
varPtr = &y;

30

www.umbc.edu

The Asterisk (or “Star”)

 The star symbol (“*”) has two purposes when
working with pointers

* The first purpose is to tell the compiler
that the variable will store an address

— In other words, “declaring a pointer”

int *varPtr = &x;
void f£xnName (float *f1tPtr);

31

www.umbc.edu

The Asterisk (or “Star”)

 The second purpose is to dereference a pointer

* Dereferencing a pointer means the compiler
— Looks at the address stored in the pointer
— Goes to that address in memory
— Looks at the value stored at that address

ptr val

address Ox564F OxBB0OS address
value KOXBBOS& value

32

www.umbc.edu

Dereferencing

* What we do at that point depends on why the
pointer is being dereferenced

* A dereference can be in three “places”

— On the left hand side of the assighment operator

— On the right hand side of the assignment operator

— In an expression without an assignment operator

* For example, a print statement

33

www.umbc.edu

Dereferencing Examples

int val = *ptr;

on the right hand side of
the assignment operator

* Look at the value, but don’t change it

ptr val
address Ox564F OxBBOS address
value {OXBBOS8 @ value

www.umbc.edu

34

Dereferencing Examples

on the left hand side of
the assignment operator

e Access the variable and change its value

ptr val
address Ox564F OxBBOS address
value {OXBBOS8 value

www.umbc.edu

35

Dereferencing Examples

cout << "Value stored 1is " << *ptr;

in an expression without
an assignment operator

* Look at the value, but don’t change it

ptr val
address Ox564F OxBBOS address
value {OXBBOS8 value

www.umbc.edu

36

AddTwo ()

www.umbc.edu

The AddTwo () Function

e Let’s create a new function that
adds 2 to two integers

— S0 22 and 98 will become 24 and 100

* Can we do this with a “regular” function?
— (That is, without using pointers?)
— No! Functions can only return one value!

* We must use pointers to change more than

one value in a single function
38

www.umbc.edu

The AddTwo () Function

 We want our function to look something like
this pseudocode:

// take in two ints, return nothing
void AddTwo(<two integers>) {

// add two to the first int

// add two to the second int

// keep the values -- but how?

39

www.umbc.edu

Passing Pointers to a Function

* To tell the compiler we are passing an address
to a function, we will use int *varPtr

void AddTwo (int *ptrl, int *ptr2)

e Just like int num tells the compiler
that we are passing in an integer value

int AddOne (int num)

40

www.umbc.edu

Writing AddTwo ()

* Given that AddOne () looks like this:
int AddOne (int num) {

return num++;

}

e How do we write the AddTwo function?
void AddTwo (int *ptrl, int *ptr2) ({

41

www.umbc.edu

AddTwo ()

void AddTwo (int *ptrl, int *ptr2) {
/* add two to the value of the
integer ptrl points to */
*ptrl = *ptrl + 2;
/* add two to the value of the
integer ptr2 points to */
*ptr2 = *ptr2 + 2;

/* return nothing */

42

www.umbc.edu

Calling AddTwo ()

* Now that the function is defined, let’s call it

* |t takes in the address of two integers
— Pass it two int pointers:
AddTwo (numPtrl, numPtr2) ;
— Pass it the addresses of two ints:
AddTwo (&numl, &num?2) ;
— Pass it a combination:
AddTwo (numPtrl, &num2) ;

43

www.umbc.edu

Literals and Pointers

 What about the following — does it work?

AddTwo (&15, &3);

* No! 15 and 3 are literals, not variables
— They are not stored in memory
— They have no address
— (They’re homeless!)

44

www.umbc.edu

Announcements

* The course policy agreement is due today

* Project 1 has been released

— Found on Professor’s Marron website
— Due by 9:00 PM on February 23rd

e Get started on it now!

e Next time: References

— And a review of pointers

45

www.umbc.edu

